11 Jan 2019

Stationary AR(p) models

Recall that stationary processes have the following properties

  1. no systematic change in the mean or variance
  2. no systematic trend
  3. no periodic variations or seasonality

We seek a means for identifying whether our AR(p) models are also stationary

Stationary AR(p) models

We can write out an AR(p) model using the backshift operator

\[ x_t = \phi_1 x_{t-1} + \phi_2 x_{t-2} + \dots + \phi_p x_{t-p} + w_t \\ \Downarrow \\ \begin{align} x_t - \phi_1 x_{t-1} - \phi_2 x_{t-2} - \dots - \phi_p x_{t-p} &= w_t \\ (1 - \phi_1 \mathbf{B} - \phi_2 \mathbf{B}^2 - \dots - \phi_p \mathbf{B}^p) x_t &= w_t \\ \phi_p (\mathbf{B}) x_t &= w_t \\ \end{align} \]

Stationary AR(p) models

If we treat \(\mathbf{B}\) as a number (or numbers), we can out write the characteristic equation as

\[ \phi_p (\mathbf{B}) x_t = w_t \\ \Downarrow \\ \phi_p (\mathbf{B}) = 0 \]

To be stationary, all roots of the characteristic equation must exceed 1 in absolute value

Stationary AR(p) models

For example, consider this AR(1) model

\[ \begin{align} x_t &= 0.5 x_{t-1} + w_t \\ x_t - 0.5 x_{t-1} &= w_t \\ x_t - 0.5 \mathbf{B} x_t &= w_t \\ (1 - 0.5 \mathbf{B})x_t &= w_t \\ \end{align} \]

Stationary AR(p) models

For example, consider this AR(1) model from earlier

\[ \begin{align} x_t &= 0.5 x_{t-1} + w_t \\ x_t - 0.5 x_{t-1} &= w_t \\ x_t - 0.5 \mathbf{B} x_t &= w_t \\ (1 - 0.5 \mathbf{B})x_t &= w_t \\ \Downarrow \\ 1 - 0.5 \mathbf{B} &= 0 \\ -0.5 \mathbf{B} &= -1 \\ \mathbf{B} &= 2 \\ \end{align} \]

This model is indeed stationary because \(\mathbf{B} > 1\)

Stationary AR(p) models

What about this AR(2) model from earlier?

\[ \begin{align} x_t &= -0.2 x_{t-1} + 0.4 x_{t-2} + w_t \\ x_t + 0.2 x_{t-1} - 0.4 x_{t-2} &= w_t \\ (1 + 0.2 \mathbf{B} - 0.4 \mathbf{B}^2)x_t &= w_t \\ \end{align} \]

Stationary AR(p) models

What about this AR(2) model from earlier?

\[ \begin{align} x_t &= -0.2 x_{t-1} + 0.4 x_{t-2} + w_t \\ x_t + 0.2 x_{t-1} - 0.4 x_{t-2} &= w_t \\ (1 + 0.2 \mathbf{B} - 0.4 \mathbf{B}^2)x_t &= w_t \\ \Downarrow \\ 1 + 0.2 \mathbf{B} - 0.4 \mathbf{B}^2 &= 0 \\ \Downarrow \\ \mathbf{B} \approx -1.35 ~ \text{and}& ~ \mathbf{B} \approx 1.85 \end{align} \]

This model is not stationary because only one \(\mathbf{B} > 1\)

What about random walks?

Consider our random walk model

\[ \begin{align} x_t &= x_{t-1} + w_t \\ x_t - x_{t-1} &= w_t \\ (1 - 1 \mathbf{B})x_t &= w_t \\ \end{align} \]

What about random walks?

Consider our random walk model

\[ \begin{align} x_t &= x_{t-1} + w_t \\ x_t - x_{t-1} &= w_t \\ (1 - 1 \mathbf{B})x_t &= w_t \\ \Downarrow \\ 1 - 1 \mathbf{B} &= 0 \\ -1 \mathbf{B} &= -1 \\ \mathbf{B} &= 1 \\ \end{align} \]

Random walks are not stationary because \(\mathbf{B} = 1 \ngtr 1\)

Stationary AR(1) models

We can define a space over which all AR(1) models are stationary

Stationary AR(1) models

For \(x_t = \phi x_{t-1} + w_t\), we have

\[ \begin{align} 1 - \phi \mathbf{B} &= 0 \\ -\phi \mathbf{B} &= -1 \\ \mathbf{B} &= \frac{1}{\phi} > 1 \Rightarrow 0 < \phi < 1\\ \end{align} \]

Stationary AR(1) models

For \(x_t = \phi x_{t-1} + w_t\), we have

\[ \begin{align} 1 - \phi \mathbf{B} &= 0 \\ -\phi \mathbf{B} &= -1 \\ \mathbf{B} &= \frac{1}{\phi} > 1 \Rightarrow 0 < \phi < 1\\ \end{align} \]

For \(x_t = -\phi x_{t-1} + w_t\), we have

\[ \begin{align} 1 + \phi \mathbf{B} &= 0 \\ \phi \mathbf{B} &= -1 \\ \mathbf{B} &= \frac{-1}{\phi} > 1 \Rightarrow -1 < \phi < 0\\ \end{align} \]

Stationary AR(1) models

Thus, AR(1) models are stationary if and only if \(\lvert \phi \rvert < 1\)