11 Feb 2019

Topics

White noise

Random walks

Biased random walks

White noise (WN)

A time series \(\{w_t\}\) is discrete white noise if its values are

  1. independent

  2. identically distributed with a mean of zero

White noise (WN)

A time series \(\{w_t\}\) is discrete white noise if its values are

  1. independent

  2. identically distributed with a mean of zero

Note that distributional form for \(\{w_t\}\) is flexible

White noise (WN)

$w_t = 2e_t - 1; e_t \sim \text{Bernoulli}(0.5)$

\(w_t = 2e_t - 1; e_t \sim \text{Bernoulli}(0.5)\)

Gaussian white noise

We often assume so-called Gaussian white noise, whereby

\[ w_t \sim \text{N}(0,\sigma^2) \]

Gaussian white noise

We often assume so-called Gaussian white noise, whereby

\[ w_t \sim \text{N}(0,\sigma^2) \]

and the following apply as well

    autocovariance:  \(\gamma_k = \begin{cases} \sigma^2 & \text{if } k = 0 \\ 0 & \text{if } k \geq 1 \end{cases}\)

    autocorrelation:   \(\rho_k = \begin{cases} 1 & \text{if } k = 0 \\ 0 & \text{if } k \geq 1 \end{cases}\)

Gaussian white noise

$w_t \sim \text{N}(0,1)$

\(w_t \sim \text{N}(0,1)\)

Random walk (RW)

A time series \(\{x_t\}\) is a random walk if

  1. \(x_t = x_{t-1} + w_t\)

  2. \(w_t\) is white noise

Random walk (RW)

$x_t = x_{t-1} + w_t; w_t \sim \text{N}(0,1)$

\(x_t = x_{t-1} + w_t; w_t \sim \text{N}(0,1)\)

Biased random walk

A biased random walk (or random walk with drift) is written as

\[ x_t = x_{t-1} + u + w_t \]

where \(u\) is the bias (drift) per time step and \(w_t\) is white noise

Biased random walk

$x_t = x_{t-1} + 1 + w_t; w_t \sim \text{N}(0,1)$

\(x_t = x_{t-1} + 1 + w_t; w_t \sim \text{N}(0,1)\)